Untargeted metabolic profiling of Vitis vinifera during fungal degradation.

نویسندگان

  • Avinash V Karpe
  • David J Beale
  • Paul D Morrison
  • Ian H Harding
  • Enzo A Palombo
چکیده

This paper illustrates the application of an untargeted metabolic profiling analysis of winery-derived biomass degraded using four filamentous fungi (Trichoderma harzianum, Aspergillus niger, Penicillium chrysogenum and P. citrinum) and a yeast (Saccharomyces cerevisiae). Analysis of the metabolome resulted in the identification of 233 significant peak features [P < 0.05; fold change (FC) > 2 and signal-to-noise ratio >50] using gas chromatography-mass spectrometry followed by statistical chemometric analysis. Furthermore, A. niger and P. chrysogenum produced higher biomass degradation due to considerable β-glucosidase and xylanase activities. The major metabolites generated during fungal degradation which differentiated the metabolic profiles of fungi included sugars, sugar acids, organic acids and fatty acids. Although, P. chrysogenum could degrade hemicelluloses due to its high β-glucosidase and xylanase activities, it could not utilize the resultant pentoses, which A. niger and P. citrinum could do efficiently, thus indicating a need of mixed fungal culture to improve the biomass degradation. Saccharomyces cerevisiae, a non-cellulose degrader, exhibited sugar accumulation during the fermentation. Penicillium chrysogenum was observed to degrade about 2% lignin, a property not observed in other fungi. This study emphasized the differential fungal metabolic behavior and demonstrated the potential of metabolomics in optimizing degradation or manipulating pathways to increase yields of products of interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core Microbiota and Metabolome of Vitis vinifera L. cv. Corvina Grapes and Musts

The composition and changes of the fungal population and of the metabolites present in grapes and in ferments of Vitis vinifera L. cv. Corvina, one of the major components of the Amarone musts, were dissected aiming at the identification of constant characteristics possibly influenced by the productive process. The fungal populations and metabolomic profiles were analyzed in three different vin...

متن کامل

Study of leaf metabolome modifications induced by UV-C radiations in representative Vitis, Cissus and Cannabis species by LC-MS based metabolomics and antioxidant assays.

UV-C radiation is known to induce metabolic modifications in plants, particularly to secondary metabolite biosynthesis. To assess these modifications from a global and untargeted perspective, the effects of the UV-C radiation of the leaves of three different model plant species, Cissus antarctica Vent. (Vitaceae), Vitis vinifera L. (Vitaceae) and Cannabis sativa L. (Cannabaceae), were evaluated...

متن کامل

New species of endophytic fungi from grapevine (Vitis vinifera) in Iran

During the study on endophytic fungi of grapevine (Vitis vinifera L.), 655 fungal isolates were obtained and studied taxonomically. Based on morphological and ITS sequences data, 15 species belonging to 10 genera including Alternaria brassicicola, A. chlamydospora, A. malorum, A. atra, Arthrinium phaeospermum, A. sacchari, Aspergillus nidulans, A. wentii, Beauveria bassiana, Cheatomium elatum, ...

متن کامل

The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega)

The natural or induced development of noble rot caused by the fungus Botrytis cinerea during the late stages of grapevine (Vitis vinifera L.) berry ripening is used in some traditional viticulture areas to produce high-quality wines such as Sauternes and Tokaji. In this research, we wanted to verify if by changing the environmental conditions during post-harvest withering we could induce the no...

متن کامل

Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi.

Grapevine species (Vitis sp.) are prone to several diseases, fungi being the major pathogens compromising its cultivation and economic profit around the world. Knowledge of the complexity of mechanisms responsible for resistance to fungus infection of cultivars, such as Regent, is necessary for strategies to be defined which will improve resistance in highly susceptible crop species. Transcript...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 362 10  شماره 

صفحات  -

تاریخ انتشار 2015